Air Dispersion Modeling 101: An Overview

Presented to
Arizona Air Toxics Stakeholders
18 July 2005

Presented by
Steven Mauch
Weston Solutions, Inc.

Objectives

- Introduce basic principles of air dispersion
 & modeling
- Describe commonly used air dispersion models
- Describe typical regulatory applications of air dispersion models

Model Applications

- Why model?
- Two ways to assess pollutant impacts
 - Measure
 - Estimate
- Measurement involves
 - Sampling (discrete / integrated)
 - Monitoring (continuous)

Model Applications – Why model?

- Measurement
 - Provides tangible results specific to a point or area
 - Methods typically geared to sensitivity
 - Quality is directly addressed
- Measurement has disadvantages
 - Costs (equipment, labs, personnel)
 - Availability of appropriate methods
 - Limited spatial / temporal coverage
 - Can only address existing sources

Model Applications – Why model?

- Modeling
 - Providing estimates over broad areas
 - Methods designed to be representative
 - Regulatory methods tend to be conservative
 - Quality is indirectly addressed
- Modeling weaknesses
 - Must rely on approximations
 - Can not account for every phenomenon

Model Applications – Why model?

- Modeling makes up for some measurement weaknesses
 - Lower costs (computers, personnel)
 - Applicable to numerous pollutants
 - Spatial / temporal coverage is greater
 - Applicable to existing or future sources

Model Applications

- Modeling is widely used in research and regulatory environments
- Regulatory applications focus on standardization and conservatism
 - Ensure that sources are treated consistently
 - Tend to overestimate impacts
- Research improvements filter down to regulatory applications

Model Applications - Examples

- Demonstrate compliance with CAA standards for permitting
 - National Ambient Air Quality Standards (NAAQS)
 - Prevention of Significant Deterioration (PSD)
 Increments
 - Class I Area Visibility & Deposition
- Demonstrate compliance with State air toxics regulations
- Provide input for Risk Assessments
 - Human health
 - Ecological

Air Dispersion - General

- In a broad sense, includes all processes that distribute emissions in the atmosphere
- Air dispersion processes are affected by
 - Atmospheric conditions
 - Emission source characteristics
 - Geographical settings
- Primary processes include transport, diffusion, and deposition

Air Dispersion - General

An illustration of aspects of dispersion

Air Dispersion Modeling

- Modeling seeks to:
 - Estimate air concentrations
 - At specific locations (receptors)
 - For specific time (averaging) periods
- Models can be:
 - Physical
 - Numerical
 - Mathematical

- Physical models:
 - Scale models of specific scenarios
 - Wind tunnels simulate atmosphere
 - Used for special cases of interest
- Numerical models:
 - Use complex 3D physics (fluid dynamics)
 - Need computing power
 - Simulate large 3D regions simultaneously
- These models are not typically used due to the high level of effort/cost involved

- Mathematical models:
 - Simplify physics to varying degrees
 - Focus on pollutant plumes
 - Use more readily available inputs
- Mathematical models are the most frequently used models for regulatory applications
- Main models currently in use are based on the mathematical model known as the Gaussian model

- Gaussian dispersion is used in air quality models in two ways:
 - Plumes
 - Puffs

Plume models

- Plumes built as fully-developed snapshots in time
- Concentrations Gaussian about plume centerline
- Plumes do not persist

Puff models

- Plumes built by continuous series of globular puffs
- Concentrations Gaussian about puff centers
- Puffs persist

- Main regulatory models are based on the Gaussian plume concept
 - Underlying principles are the same
 - Models differ primarily in handling of specific aspects of dispersion
- Choice of plume vs puff based primarily on transport distance
 - Plume models used for short-range transport (distances of ~ 10 km or 6 mi)
 - Puff models used for longer ranges

Gaussian Models

 Gaussian models rely on observation that over time, concentrations in a plume tend to average into bell-shaped curves horizontally & vertically

Gaussian Model

- Gaussian curve is familiar normal curve
 - Spread defined by standard deviation (σ)
 - Almost all pollutant mass is contained within
 ~2σ of centerline
- Mathematical plume is outlined by ellipses
 - Vertical axis $\propto \sigma_z$ (sigma-z)
 - Horizontal axis $\propto \sigma_y$ (sigma-y)

Air Dispersion

Perspective view of Gaussian plume shape

Gaussian Models

- Gaussian equations will describe the plume, once its dimensions and location are known
- So..... Where's the plume??
 - Height above ground?
 - Orientation?
 - Dimensions?
- Answers are defined by
 - Source characteristics
 - Atmospheric conditions
 - Geographic setting

Source Characteristics

- All source types share 2 primary characteristics for modeling:
 - Release height (above ground)
 - Release rate (generally mass / time)
- Other characteristics are specific to source types
- Emission source types
 - Point (stacks)
 - Volume (buildings, dumping, vehicle-raised dust)
 - Area (lagoons, storage piles)

Source Characteristics – By Type

- Point sources:
 - Gas exit temperature & velocity
 - Stack diameter
- Volume sources:
 - Initial horizontal & vertical dimensions
- Area sources:
 - Length & width
 - Orientation angle
 - Emissions = mass / area / time

Source Characteristics – Plumes

- Plumes rise from the stack to a final height at some distance downwind
 - Most of the plume is at final height
 - Adjustments are typically applied over the distance from the stack to the final rise
- Plume rise to final height is
 - Proportional to stack gas temperature & velocity (buoyancy & momentum)
 - Affected by atmospheric stability, wind speed & temperature

Atmospheric Conditions

- Main drivers of dispersion:
 - Stability
 - Wind speed & direction
 - Mixing depth
- Stability relates to the amount of turbulence
- Wind determines the transport of pollutants
- Mixing depth confines pollutants (limits dispersion)

- Turbulence is generated by
 - Heating (thermal turbulence)
 - Obstacles to flow (mechanical turbulence)
- Stability reflects the atmosphere's ability to resist turbulence
 - Greater Stability = Less Turbulence
- Dispersion modeling views stability 2 ways (as convenient):
 - As discrete categories
 - On a continuous scale

- Discrete stability categories
 - Developed based on observation & field experiments (Pasquill)
 - 6 categories, A-F
 - Used in many dispersion models

Category	Description		
А	Very Unstable		
В	Moderately unstable		
С	Slightly unstable		
D	Neutral		
Е	Slightly stable		
F	Moderately stable		

- Categories can be related to general weather conditions
 - Used for incident modeling where limited data available
 - Many models use this basic approach

Wind Speed		Day		Night	
(m/s)	Incoming Solar radiation			Cloud Cover	
	Strong	Moderate	Slight	Mostly Cloudy/ Thin Overcast	Partly Cloudy
< 2	A	A-B	В		
2-3	A-B	В	С	Е	F
3-5	В	В-С	С	D	Е
5-6	С	C-D	D	D	D
>6	С	D	D	D	D

- Continuous stability scale
 - Monin-Obukhov length (L)
 - Ratio of mechanical and thermal energy fluxes (turbulence)
 - Stable, L > 0; Unstable, L < 0
- Can be used to characterize other atmospheric parameters
- Table: example vs
 Pasquill categories (for flat rural roughness)

Category	1/L (m ⁻¹)	
А	-0.125	
В	-0.062	
С	-0.020	
D	0	
Е	0.022	
F	0.072	

- Stability controls plume shape in Gaussian model
 - Plume σ's change with downwind distance is a function of stability
 - Downwind spread also governed by stability

Atmospheric Conditions - Winds

- Wind speed
 - Determines travel time
 - Concentration inversely proportional to speed in Gaussian model
- Wind direction
 - Determines transport direction
 - Plume centerline = mean wind direction
- Steady-state assumption
 - Each hour is a 'snapshot' in time
 - Model assumes plumes fully formed
 - Old plumes are forgotten in favor of new ones

Atmospheric Conditions - Mixing Depth

- Mixing depth is the height of the layer in which dispersion will occur
 - Puts a "lid" on dispersion
 - Typically varies from 100 2000 m (300 6500 ft)
 - Higher or lower values may occur in specific conditions
- Strongly influenced by temperature profile
 - Inversions are often limiting factor
 - With no inversions, mixing can occur through entire boundary layer
 - Follows a diurnal cycle

Atmospheric Conditions - Mixing Depth

Illustration of diurnal inversion cycle

Atmospheric Conditions - Mixing Depth

- Plumes can be trapped by the top of the mixed layer
 - Pollutants reflected back toward the ground
 - Generally increases concentrations
- Plumes can be isolated above the mixed layer
 - Pollutants not transported downward
 - No impacts below boundary
- Plumes can be split by the mixing boundary
 - Mixed effects
- Models can account for these effects

Geographic Setting

- Geographic setting of a source influences dispersion through
 - Land use around the facility
 - Surrounding buildings
 - Varying terrain elevations

Geographic Setting – Land Use

- Land use affects turbulence
 - Urban/populated areas are rougher than rural areas, disrupting air flow more
 - Results in different σ curves for rural & urban areas
 - Newer models account for land use by compass sector in meteorology preprocessing
- Rural & urban have specific meanings in regulatory modeling
 - Under EPA guidance, a majority of the area within 3 km of a source must have densely populated or industrial land uses to be considered "urban"
 - As a result, urban classification is seldom used

Geographic Setting – Buildings

- Buildings disrupt airflow around them
 - Creates a zone of disturbed flow
- Plumes may interact with the disturbed flow
 - Plume material may be drawn downward
 - Effect is referred to as "downwash"
- Downwash results in increased groundlevel concentrations close to the stack source
 - Non-stack sources are not subject to downwash in models

Building Downwash

Figure 3.15 Schematic of the various flow regions around a two-dimensional wall or a building: (a) Mean streamline pattern. (b) Mean velocity profiles at various locations along the flow. From Halitsky, 1968.

- EPA has defined "Good Engineering Practice" (GEP) stack heights to evaluate downwash effects
 - GEP height (H_{gep}) is the height above which downwash effects are avoided
 - For most cases, $H_{gep} = H_b + 1.5 * L_b$, where H_b is the height of the building and L_b is the lesser of the controlling building's height or maximum profile width
 - The controlling building is the building with the maximum H_{qep} for a stack.
 - A building is eligible to be the controlling building if any corner of the building is within 5 * L_b of the stack.

- GEP height example:
 - 100 ft long, 60 ft wide, 24 ft tall building
 - $-H_{b} = 24, L_{b} = 24$
 - $-H_{gep} = 2.5 * 24 = 60 \text{ ft}$
 - Stack tops 60 ft or higher above ground (36 ft above roof top) will not suffer downwash effects
 - Stack tops shorter than 60 ft will be subject to downwash effects

- Regulatory models contain algorithms to account for downwash effects
 - Downwash can increase concentrations by factors of 2-5 times
 - More sophisticated algorithms being incorporated into some regulatory models
- Refined models handling downwash need detailed information
 - Scaled map of building outlines, including tiers (corner coordinates)
 - Heights of all tiers
 - Coordinates of all stacks

- Separate program used to develop downwash-related inputs to dispersion model
 - Influence zones change with wind direction
 - Influence zones from multiple tiers need to be compared
 - Controlling building tiers can change w/ wind direction
 - Newer algorithms need more directionspecific information

Illustration of building downwash effects zones

- Real-world terrain alters the path of air flow and plumes
- Receptors are placed in networks that overlay the terrain
 - Receptor location elevations are inputs to models
 - Elevation data are obtained from USGS Digital Elevation data sets
- Elevation affects concentration by its placement relative to the plume centerline

- Gaussian plume models see terrain in 3 general categories
 - Simple terrain elevations below stack top
 - Complex terrain elevations above final plume height
 - Intermediate terrain range of elevations between simple and complex levels
- Models compensate to account for terrain types

Terrain classifications

- Gaussian plume models generally limited in treatment of terrain effects on plumes
 - Basic model treats plume as shown on previous slide
 - Steady state plume models do not generally account for local air flow around terrain features
- Regulatory plume models vary in treatment of complex terrain
 - Some provide adjustments for plume impaction on hillsides
 - Some include algorithms to decide if plume hits, rides over or goes around hills (critical dividing streamline)
 - Some models are specifically designed to evaluate complex terrain features

Dispersion Models

- Focus on the primary USEPA regulatory models
 - Models & information can be found on EPA Support Center for Regulatory Air Modeling (SCRAM)
 - Online at www.epa.gov/ttn/scram/
 - Other models are included on the site
- There are 4 models frequently encountered in permitting situations

Dispersion Models

- SCREEN3
- ISC3
 - Industrial Source Complex, Version 3
- CTDMPLUS / CTSCREEN
 - Complex Terrain Dispersion Model
 - PLus Algorithms for <u>Unstable Situations</u>
- CALPUFF
 - CALifornia Air Resources Board PUFF Model

- SCREEN3 is a screening version of the full ISC3 model
 - Screening is used to determine whether more refined modeling is needed
 - If screening concentrations are below required thresholds, refined modeling may not be necessary
- This model contains essentially the same core calculations as ISC3
 - Some simplifications due to the screening assumptions

- Model features
 - Single source model
 - Point, area, and volume sources
 - Downwash effects
 - Synthetic meteorology matrix (no WD)
 - Simple & complex terrain
 - 1-hour averages only
 - Special calculations (not in ISC3)
 - Flare sources
 - Building wake cavity
 - ➤ Shoreline & inversion breakup fumigation

- Synthetic meteorology matrix
 - 13 wind speeds (1 20 m/s or 2 45 mph)
 - 6 Pasquill stability classes
 - 54 combinations
 High wind speeds not associated with very stable/unstable categories
 - Mixing heights proportional to wind speed
 - All 54 combinations are evaluated
 - Worst-case concentrations are output
- User converts 1-hour averages to longer periods using predefined scaling factors

- No wind direction
 - Receptors on plume centerline only
 - Automated or user-chosen distances
 - Mixing heights proportional to wind speed
- Cavity calculations
 - Winds along maximum building length & width used (2 calculations)
 - Estimate length & maximum concentration for each building cavity zone

Dispersion Models – ISC3

- The "workhorse" air dispersion model
- Full-featured, refined model allowing
 - Multiple sources
 - 3-D receptor distribution
 - Actual (representative) meteorological data

Dispersion Models – ISC3

Model features

- Used for all terrain areas (simple, intermediate, complex)
- Point, volume, area, and pit sources
- Wet & dry particle, dry gas deposition
- Building downwash effects
- Uses Pasquill stability
- Rural or urban dispersion curves used for all wind directions
- Single point, single level meteorological data
- Multiple averaging periods

Dispersion Models – ISC3

- Intermediate terrain treatment
 - Algorithms for simple & complex terrain
 - Intermediate terrain model tries both, picks maximum
- Deposition estimates available
 - Gas deposition (dry only) needs deposition velocity
 - Particle deposition requires particle size distribution
 - Wet deposition requires precipitation data
 - Removal of material from plume is optional
- Concentrations at 1-hour intervals
 - Longer periods are block averaged
 - Includes EPA procedure for handling calm hours

Dispersion Models – CTDM

- CTDMPLUS & CTSCREEN are designed specifically for evaluating complex terrain features
 - Point sources only, no downwash
 - CTDMPLUS uses actual, multilevel meteorological data
 - CTSCREEN uses a screening approach to choose worstcase wind direction
- Both models look at specific terrain features (hills)
 - Actual hill elevation contours must be digitized as input
 - Receptors may be placed on contours or elsewhere on hills
- These models are only used where plume impacts on terrain features is of particular concern (ISC3)

Dispersion Models - CALPUFF

- CALPUFF is a Gaussian puff model
 - Sources release puffs at a rate according to wind speed
 - Puffs disperse as they are moved by wind field
 - Concentrations within puffs are Gaussian
 - Puffs from previous hours persist
 - Puffs are tracked over lifetime in model domain
- Used for long-range transport
 - Assumption of straight-line plumes not valid for long distances (> 10 km)
 - Puffs follow curving trajectories based on wind direction changes

Dispersion Models – CALPUFF

- Model features
 - Point, volume, area sources
 - Downwash effects
 - Chemical transformations (sulfate, nitrate, ammonia)
 - Multiple meteorological stations over large model domains
 - Multiple vertical layers
 - Gridded 3-D wind fields including terrain effects
 - Dry and wet deposition

Dispersion Models - CALPUFF

- Extremely sophisticated model
 - Requires significant effort
 - Model domains can cover 100 x 100 mile areas
- Extensive input data pre-processing requirements
 - Land use / land cover data
 - Terrain elevation data
 - Surface meteorological data
 - Upper air meteorological data
 - Preprocessors can take longer to run than the model itself!

Dispersion Models - CALPUFF

- Fortunately, there is a screening mode
 - Model can be run with only ISC3 meteorological data (single-station, single-level)
 - CALPUFF uses same source inputs as ISC3
- Used for Class I area evaluations
 - Class I areas are natural parks, forests, and wildlife preserves specifically protected in the CAA
 - Visibility of natural vistas is primary concern
 - Sulfates, nitrates, ammonia, and fine particle pollution decrease 'natural' visibility
 - CALPUFF specifically designed to model these effects
 - Also provides acid deposition estimates for park ecosystems

- The ISC model has been in use for over a decade
 - Dispersion modeling research has advanced
- Quest for a successor to ISC3
- Began 1991 with AMS/EPA Regulatory Model Improvement Committee (AERMIC)
 - 1999 AERMIC Model (AERMOD) released
 - 2000 Formally proposed as regulatory model
 - 2003 Latest round of public comment
 - 2005 Latest Beta-test release
- AERMOD is generally considered on a case-bycase basis by agencies, pending final approval

- Model features
 - Same interface as ISC3
 - New meteorology & terrain preprocessors
 - Uses Monin-Obukhov stability
 - Uses vertical profiles of wind, temperature, and turbulence
 - All elevation ranges treated consistently
 - Land use incorporated by direction sector in profile calculations
 - Improved downwash treatment

- AERMOD relies on similarity theory
 - Parameters (wind, temperature, etc.) in boundary layer follow similar profiles with height (z)
 - Each can be expressed in terms of a scaling height (Monin-Obukhov Length)
 - Profiles calculated based on z/L

Fig. 1.2. Mean vertical profiles of wind speed, wind direction, and potential temperature in the stable boundary layer.

- Profile benefits
 - More realistic representation than fixed curves
 - Allows use of multi-level meteorological data
- AERMOD has evolved from original proposed version
 - Plume RIse Model Enhancements (PRIME) developed for ISC in 1998 are now in latest Beta (downwash effects)
 - Dry & wet deposition processes have been added

